Back into Poverty

Increase in food prices has pushed back into poverty at least 100 million people in 2008 and, according to the United Nations Standing Committee on Nutrition (here, p. 60),

erase at least four years of progress towards the Millennium Development Goal (MDG) 1 target for the reduction of poverty. The household level consequences of this crisis are most acutely felt in LIFDCs [Low-Income Food-Deficit Countries] where a 50% rise in staple food prices causes a 21% increase in total food expenditure, increasing these from 50 to 60% of income. In a high income country this rise in prices causes a 6% rise in retail food expenditure with income expenditure on food rising from 10 to 11%. FAO estimates that food price rises have resulted in at least 50 million more people becoming hungry in 2008, going back to the 1970 figures.

According to the World Bank (here) this means that between 200,000 and 400,000 more children will died every year for malnutrition until 2015.

Thursday, 18 June 2009

Crisis from the South

According to Banco de Guatemala, for the first time since 1999, in January 2009 remittances from abroad decreased by 7.75% compared to the same month in 2008. In Guatemala remittance  flows represent 11.89% of GDP. According to the World Bank remittances can represent more than 50% of rurally-based family income and for the International Organization for Migration 30.4% of the population receives money from abroad.

Causes? Probably economic crisis and deportation of  illegal immigrants from the US.

Something is certain: remittances are a strong factor in reducing poverty in Guatemala. If flows continue to decrease is more than probable that poverty will rise in a country where, according to the government, 45,6% of children are already underweight.

Monday, 16 February 2009

tweets


Twitter: frbailo

links


blogroll


RSS r-bloggers.com

  • Introducing scale model in greybox
    At the end of June 2021, I released the greybox package version 1.0.0. This was a major release, introducing new functionality, but I did not have time to write a separate post about it because of the teaching and lack of free time. Finally, Christmas has arrived, and I could spend several ... Continue reading: […]
  • Plotting Bee Colony Observations and Distributions using {ggbeeswarm} and {geomtextpath}
    Setup Loading the R libraries and data set. # Loading libraries library(geomtextpath) # For adding text to ggplot2 curves library(tidytuesdayR) # For loading data set library(ggbeeswarm) # For creating a beeswarm plot library(tidyverse) # For the gg... Continue reading: Plotting Bee Colony Observations and Distributions using {ggbeeswarm} and {geomtextpath}
  • Non-linear model of serial dilutions with Stan
    In chapter 17 “Parametric nonlinear models” of Bayesian Data Analysis1 by Gelman et al., the authors present an example of fitting a curve to a serial dilution standard curve and using it to estimate unknown concentrations. Below, I build t... Continue reading: Non-linear model of serial dilutions with Stan
  • Predicting future recessions
    Even if this sounds incredible, yes, we can predict future recessions using a couple of time series, some simple econometric models, and … R !  The basic idea is that the slope of the yield curve is somewhat linked to the probability of future recessions. In other words, the difference between the ... Continue reading: […]
  • Detecting multicollinearity — it’s not that easy sometimes
    By Huey Fern Tay with Greg Page When are two variables too related to one another to be used together in a linear regression model? Should the maximum acceptable correlation be 0.7? Or should the rule of thumb be 0.8? There is actually no single, ‘one-size-fits-all’ answer to this question. As an ... Continue reading: Detecting multicollinearity […]

RSS Simply Statistics

RSS Statistical Modeling, Causal Inference, and Social Science