Brain matters

Saying that education strengths economic growth sounds good old common sense. But proving and measuring this relation is not immediate and therefore interesting. A reasearch, published last year, does it. Eric Hanushek, Dean T. Jamison, Eliot A. Jamison and Ludger Woessmann estimate that

each additional year of average schooling in a country increased the average 40-year growth rate in GDP by about 0.37 percentage points. That may not seem like much, but consider the fact that since World War II, the world economic growth rate has been around 2 to 3 percent of GDP annually. Lifting it by 0.37 percentage points is a boost to annual growth rates of more than 10 percent of what would otherwise have occurred, a significant amount.

Nonetheless, the research suggests that what really matters for economic growth is the quality of education. In other words it is not enough to send children to school: you have to teach them something. Using test-score performances around the world to measure the cognitive skills of students appears

that countries with higher test scores experienced far higher growth rates. If one country’s test-score performance was 0.5 standard deviations higher than another country during the 1960s (…) the first country’s growth rate was, on average, one full percentage point higher annually over the following 40-year period than the second country’s growth rate. Further, once the impact of higher levels of cognitive skills are taken into account, the significance for economic growth of school attainment, i.e., additional years of schooling, dwindles to nothing. A country benefits from asking its students to remain in school for a longer period of time only if the students are learning something as a consequence.

These results are extremely important especially for the countries of the Bottom Billion. What they are saying is that it is better to invest on the quality of the education (where rate of return is much higher) rather than spending to keep students in schools longer.

Tuesday, 17 March 2009

tweets


Twitter: frbailo

links


blogroll


RSS r-bloggers.com

  • Introducing scale model in greybox
    At the end of June 2021, I released the greybox package version 1.0.0. This was a major release, introducing new functionality, but I did not have time to write a separate post about it because of the teaching and lack of free time. Finally, Christmas has arrived, and I could spend several ... Continue reading: […]
  • Plotting Bee Colony Observations and Distributions using {ggbeeswarm} and {geomtextpath}
    Setup Loading the R libraries and data set. # Loading libraries library(geomtextpath) # For adding text to ggplot2 curves library(tidytuesdayR) # For loading data set library(ggbeeswarm) # For creating a beeswarm plot library(tidyverse) # For the gg... Continue reading: Plotting Bee Colony Observations and Distributions using {ggbeeswarm} and {geomtextpath}
  • Non-linear model of serial dilutions with Stan
    In chapter 17 “Parametric nonlinear models” of Bayesian Data Analysis1 by Gelman et al., the authors present an example of fitting a curve to a serial dilution standard curve and using it to estimate unknown concentrations. Below, I build t... Continue reading: Non-linear model of serial dilutions with Stan
  • Predicting future recessions
    Even if this sounds incredible, yes, we can predict future recessions using a couple of time series, some simple econometric models, and … R !  The basic idea is that the slope of the yield curve is somewhat linked to the probability of future recessions. In other words, the difference between the ... Continue reading: […]
  • Detecting multicollinearity — it’s not that easy sometimes
    By Huey Fern Tay with Greg Page When are two variables too related to one another to be used together in a linear regression model? Should the maximum acceptable correlation be 0.7? Or should the rule of thumb be 0.8? There is actually no single, ‘one-size-fits-all’ answer to this question. As an ... Continue reading: Detecting multicollinearity […]

RSS Simply Statistics

RSS Statistical Modeling, Causal Inference, and Social Science