Information Flows on Mobiles

The idea to use mobile phones (here and here) to help economic development in the most remote corners of the world is fascinating and definitely smart. For one thing, mobile phones have already reached the Bottom Billion. In 2007 there were 45 subscribers per 100 inhabitants in the developing countries. That means that we can now expect to have one mobile in every family. Everywhere. As well in communities where services like water, electricity, hospitals, schools or transportation are still far away.

What poor people mostly need are functioning institutions. And market is one of these. If market is not working, farmers will pay higher prices for what they buy and got less money for what they sell.  Moreover they could buy or sell at the wrong time and possibly in the wrong place. In the words of the government of Rwanda,

the success of these farmers has been greatly affected by lack of access to pricing information. Many times, farmers speculate what crops to grow and what prices to charge at harvest. Some farmers depend on middlemen to dictate the prices and in most cases the latter exploit the former. For any farmer to earn a decent living from agriculture, easy access to information on market prices is of paramount importance.

Making information flows on mobile phones could

empower farmers to enable them make more informed market pricing decisions and ultimately more successful farming.

The idea of mobile banking goes in the same direction: making a  service so critical for development accessible to almost everyone. That will not end poverty, but  will probably make the task easier.

Thursday, 16 April 2009

Understanding Capitalism

Nobel-winning economist Amartya Sen argues, in an article published on The New York Review of Books, that the way out from the crisis passes through a better understanding of the ideas that contributed to build the actual economic system. Adam Smith, John Maynard Keynes, Arthur Cecil Pigou, should be read, not just quoted. And I quote

Smith viewed markets and capital as doing good work within their own sphere, but first, they required support from other institutions—including public services such as schools—and values other than pure profit seeking, and second, they needed restraint and correction by still other institutions—e.g., well-devised financial regulations and state assistance to the poor—for preventing instability, inequity, and injustice. If we were to look for a new approach to the organization of economic activity that included a pragmatic choice of a variety of public services and well-considered regulations, we would be following rather than departing from the agenda of reform that Smith outlined as he both defended and criticized capitalism.

We must understand how institutions work and make them work better. But not just aiming at economic growth.

There is a critical need for paying special attention to the underdogs of society in planning a response to the current crisis, and in going beyond measures to produce general economic expansion.

A crisis not only presents an immediate challenge that has to be faced. It also provides an opportunity to address long-term problems when people are willing to reconsider established conventions. This is why the present crisis also makes it important to face the neglected long-term issues like conservation of the environment and national health care, as well as the need for public transport (…).

Sunday, 22 March 2009


Twitter: frbailo




  • Handling & Sharing PCAPs Like a Boss with PacketTotal
    The fine folks over at @PacketTotal bequeathed an API token on me so I cranked out an R package for it to enable more dynamic investigations work (RStudio makes for an amazing incident responder investigations console given that you can script in multiple languages, code in C[++], and write documentation all at the same time... […]
  • Code and Data in a large Machine Learning project
    We did a large machine learning project at work recently. It involved two data scientists, two backend engineers and a data engineer, all working on-and-off on the R code during the project. The project had many interesting and new aspects to me, among them are doing data science in an agilish way, how to keep […]
  • RQuantLib 0.4.8: Small updates
    A new version 0.4.8 of RQuantLib reached CRAN and Debian. This release was triggered by a CRAN request for an update to the script which was easy enough (and which, as it happens, did not result in changes in the configure script produce...
  • Rcpp 1.0.1: Updates
    Following up on the 10th anniversary and the 1.0.0. release, we excited to share the news of the first update release 1.0.1 of Rcpp. package turned ten on Monday—and we used to opportunity to mark the current version as 1.0.0! It arrived at CRAN ov...
  • wrapr::let()
    I would like to once again recommend our readers to our note on wrapr::let(), an R function that can help you eliminate many problematic NSE (non-standard evaluation) interfaces (and their associate problems) from your R programming tasks. The idea is to imitate the following lambda-calculus idea: let x be y in z := ( λ […]

RSS Simply Statistics

  • 10 things R can do that might surprise you
    Over the last few weeks I’ve had a couple of interactions with folks from the computer science world who were pretty disparaging of the R programming language. A lot of the critism focused on perceived limitations of R to statistical analysis. It’s true, R does have a hugely comprehensive list of analysis packages on CRAN, […]
  • Open letter to journal editors: dynamite plots must die
    Statisticians have been pointing out the problem with dynamite plots, also known as bar and line graphs, for years. Karl Broman lists them as one of the top ten worst graphs. The problem has even been documented in the peer reviewed literature. For example, this British Journal of Pharmacology paper titled Show the data, don’t […]
  • Interview with Stephanie Hicks
    Editor’s note: For a while we ran an interview series for statisticians and data scientists, but things have gotten a little hectic around here so we’ve dropped the ball! But we are re-introducing the series, starting with Stephanie Hicks. If you have recommendations of a (junior) person in academics or industry you would like to […]

RSS Statistical Modeling, Causal Inference, and Social Science