Local participation and not unemployment explains the M5S result in the South

The abundance of economic data and the scarcity of social data with a comparable level of granularity is a problem for the quantitative analysis of social phenomena. I argue that this fundamental problem has misguided the analysis of the electoral results of the Five Star Movement (M5S) and its interpretation. In this article, I provide statistical evidence suggesting that — in the South — unemployment is not associated with the exceptional increase in the M5S support and that local participation is a stronger predictor of support than most of the demographics.

What happened

The 2018 Italian general elections (elections, since both the Chamber of Deputies and the Senate, were renewed) saw

  1. a significant increase in the number of votes for two parties, the Five Start Movement (M5S) and the League (formerly Northern League),

and

  1. an increase in the importance geography as an explanatory dimension for the distribution of votes.

The following two maps show where the M5S and the League have increased electoral support from 2013 to 2018. (Electoral data are always data for the election of the Chamber of Deputies).

Vote difference: 2018-2013 (a few communes have not reported all the results, notably Rome)

 

The geographic pattern is quite simple. The M5S has increased its support in the South and maintained its votes in the North, the League has significantly strengthened its support in the North but has also collected votes in the South, where it had virtually no support. The third and the fourth most voted parties, the Democratic Party (PD) and Berlusconi’s Forza Italia (FI), have lost votes almost everywhere. If we map the results of the four parties side-by-side with the same scale, the PD and FI almost faded into the background.

Votes in the 2018 General elections

Yet, major metropolitan areas do not always follow the national trend. If Naples unambiguously voted M5S, Turin, Milan and Rome did saw the Democratic Party as the most voted party in the wealthiest districts.

Votes in the 2018 General elections (Clock-wise from top-left: Turin, Milan, Naples, Rome)

The density of the distribution of results at the commune and sub-commune level in the macro regions indicates that if the M5S electorally dominates in the South and in the two major islands, the League is the most popular party in the North.

Distribution of votes at commune or sub-commune level

The territoriality of the results, especially along the North-South dimension, makes the analysis especially complicated. This because the strong result of the League in the North and of the M5S in the South might simplistically suggest that immigration (which is much stronger in the North) explains the League’s result in the North and unemployment and poverty (stronger in the South) explain the M5S’s result in the South. This reading is especially attractive since immigration and the M5S proposal to introduce a guaranteed minim income have dominated the campaign.

(more…)

Tuesday, 20 March 2018

Quick analysis of the Italian referendum results

The 2016 Italian referendum torpedoed the constitutional reform presented by the government presided by Matteo Renzi (41). According to the final count, which includes 1.2 million votes cast overseas, the reform was rejected by almost 60% of the voters.

Three parties played a predominant role during the electoral campaign: the ruling Democraric Party (PD), leaded by the chief of government Renzi, the Five Star Movement (M5S), founded and leaded by Beppe Grillo (68), and the Lega Nord (LN), leaded by Matteo Salvini (43). The fourth Italian party, Forza Italia, for different reasons – including the health of Silvio Berlusconi (80) – played a minor role.

(more…)

Monday, 5 December 2016

Cosa possiamo imparare dal M5S

Leggo e rispondo al post di Massimo Mantellini (Il M5S, il wifi e il principio di precauzione) in cui si evidenzia con preoccupazione come il Movimento abbia portato in Parlamento, dunque in qualche modo legittimandole, posizioni anti-scientifiche; un “pensiero tossico, banale e a suo modo inattaccabile, che nuoce al Paese intero”.

Il Movimento Cinque Stelle con un bacino elettorale che si aggira tra il 25 e il 30% (8.5-10 milioni di persone) è necessariamente complesso in termini di rappresentanza demografica e di diversità di opinione. Considerando un astensionismo del 25%, se vi trovate in fila al supermercato delle 10 persone che vi precedono circa due votano M5S. Purtroppo questa complessità raramente traspare nelle narrazioni giornalistiche, e chi fa informazione tende (troppo) spesso a preferire i tratti caricaturali (da cappello di carta stagnola o da gita in Corea del Nord, per intenderci). Ma questo tipo di informazione è sbagliata: primo perché distorce nella semplificazione, secondo perché incoraggia comportamenti macchiettistici, grotteschi e sbracati da parte di chi sedendo in istituzioni affollate cerca visibilità.

(more…)

Friday, 22 July 2016

Road to Rome: The organisational and political success of the M5S

The Five Star Movement (M5S) obtained two major victories in the second round of municipal elections on 19 June 2016 in Rome and Turin. Rome attracted the most international attention but it is M5S’ victory in Turin that is likely the most consequential for them and other European anti-establishment parties.

In Rome, a municipality with 2.8 million people and an annual budget of €5 billon, Virginia Raggi (age 37) gained doubled the votes of her contender Roberto Giachetti (age 55). In Turin, a city with a population of 900,000 and an annual budget of €1.69 billion, Chiara Appendino (age 31) outstripped Piero Fassino (age 66) by about 10 percentage points.

Continue reading on Pop Politics Aus

Friday, 8 July 2016

Italy’s Five Star Movement – a spectral analysis of its political composition

To talk about identity and soul of the Five Star Movement (M5S) is not only politically contentious but also practically challenging because of the different axes (at least three) along which the M5S has been developing: the vertical top-down axis from Beppe Grillo to his followers (and sympathising voters), the horizontal axis connecting thousands of militants across the country to local, flexible and loosely organised meetups, and finally the cloudy axis linking Internet users through the different online communicative platforms pertaining to the Movement. The academic literature and the media have been prevalently interested in mapping the provenance of votes. I will try here to show some data also on the position of the M5S derived from its 2013 electoral program and the political background of both the onsite and online activists of the Movement.

But let’s first start briefly introducing the trajectory of a movement that vehemently refuses to be called a party or to be associated with any traditional political identity.

Continue reading on the blog of the WZB.

Tuesday, 12 May 2015

tweets


Twitter: frbailo

links


blogroll


RSS r-bloggers.com

  • Angela Bassa discusses managing data science teams and much more.
    Hugo Bowne-Anderson, the host of DataFramed, the DataCamp podcast, recently interviewed Angela Bassa, the Director of Data Science at iRobot. Here is the podcast link. Introducing Angela Bassa Hugo: Hi there Angela, and welcome to DataFramed. Angela: Thanks, thanks for having me. Hugo: It's a great pleasure to have you on the show, and I'm […]
  • Preview my new book: Introduction to Reproducible Science in R
    I’m pleased to share Part I of my new book “Introduction to Reproducible Science in R“. The purpose of this …Continue reading →
  • How to de-Bias Standard Deviation Estimates
    This note is about attempting to remove the bias brought in by using sample standard deviation estimates to estimate an unknown true standard deviation of a population. We establish there is a bias, concentrate on why it is not important to remove it for reasonable sized samples, and (despite that) give a very complete bias […]
  • Data Science With R Course Series – Week 9
    There are only two more weeks in the course! This week will extend what you learned from the Expected Value by performing an optimization and sensitivity analysis. The optimization and sensitivity analysis will teach you how to identify the maximum bu...
  • RATest. A Randomization Tests package is available on CRAN
    This blog post introduces the RATest package we released a while back on CRAN with my colleague and good friend Mauricio Olivares-Gonzalez. The package contains a collection of randomization tests, data sets and examples. The current version focuses on two testing problems and their implementation in empirical work, mostly related to economics. First, it facilitates […]

RSS Simply Statistics

  • The role of academia in data science education
    I was recently asked to moderate an academic panel on the role of universities in training the data science workforce. I preceded each question with opinionated introductions which I have fused into this blog post. These are weakly held opinions so please consider commenting if you disagree with anything. To discuss data science education we […]
  • Guest Post: Galin Jones on criteria for promotion and tenture in (bio)statistics departments
    Editor’s Note: I attended an ASA Chair’s meeting and spoke about ways we could support junior faculty in data science. After giving my talk Galin Jones, Professor and Director of Statistics at University of Minnesota, and I had an interesting conversation about how they had changed their promotion criteria in response to a faculty candidate […]
  • The economic consequences of MOOCs
    tl;dr check out our new paper on the relationship between MOOC completion and economic outcomes! Last Monday we launched our Chromebook Data Science Program so that anyone with an internet connection, a web browser, and the ability to read and follow instructions could become a data scientist. Why did we launch another MOOC program? Aren’t […]

RSS Statistical Modeling, Causal Inference, and Social Science