Local participation and not unemployment explains the M5S result in the South

The abundance of economic data and the scarcity of social data with a comparable level of granularity is a problem for the quantitative analysis of social phenomena. I argue that this fundamental problem has misguided the analysis of the electoral results of the Five Star Movement (M5S) and its interpretation. In this article, I provide statistical evidence suggesting that — in the South — unemployment is not associated with the exceptional increase in the M5S support and that local participation is a stronger predictor of support than most of the demographics.

What happened

The 2018 Italian general elections (elections, since both the Chamber of Deputies and the Senate, were renewed) saw

  1. a significant increase in the number of votes for two parties, the Five Start Movement (M5S) and the League (formerly Northern League),

and

  1. an increase in the importance geography as an explanatory dimension for the distribution of votes.

The following two maps show where the M5S and the League have increased electoral support from 2013 to 2018. (Electoral data are always data for the election of the Chamber of Deputies).

Vote difference: 2018-2013 (a few communes have not reported all the results, notably Rome)

 

The geographic pattern is quite simple. The M5S has increased its support in the South and maintained its votes in the North, the League has significantly strengthened its support in the North but has also collected votes in the South, where it had virtually no support. The third and the fourth most voted parties, the Democratic Party (PD) and Berlusconi’s Forza Italia (FI), have lost votes almost everywhere. If we map the results of the four parties side-by-side with the same scale, the PD and FI almost faded into the background.

Votes in the 2018 General elections

Yet, major metropolitan areas do not always follow the national trend. If Naples unambiguously voted M5S, Turin, Milan and Rome did saw the Democratic Party as the most voted party in the wealthiest districts.

Votes in the 2018 General elections (Clock-wise from top-left: Turin, Milan, Naples, Rome)

The density of the distribution of results at the commune and sub-commune level in the macro regions indicates that if the M5S electorally dominates in the South and in the two major islands, the League is the most popular party in the North.

Distribution of votes at commune or sub-commune level

The territoriality of the results, especially along the North-South dimension, makes the analysis especially complicated. This because the strong result of the League in the North and of the M5S in the South might simplistically suggest that immigration (which is much stronger in the North) explains the League’s result in the North and unemployment and poverty (stronger in the South) explain the M5S’s result in the South. This reading is especially attractive since immigration and the M5S proposal to introduce a guaranteed minim income have dominated the campaign.

(more…)

Tuesday, 20 March 2018

2018 Italian general election: Details on my simulation

This article describes the simulation behind the app that you find here

This simulation of the results for the 2018 general election is based on the results from the last two national elections (the Italian parliament election in 2013 and the European Parliament election 2014) and national polls conducted until 16 February 2018. The simulation is based on one assumption, which is reasonable but not necessarily realistic: the relative territorial strength of parties is stable. From this assumption derives that if the national support for a party (as measured by national voting intention polls) varies, it varies consistently and proportionally everywhere. A rising tide lifts all boats and vice versa. The assumption has some empirical justification. If we compare the difference from the national support (in percentage) for each district in 2013 and 2014 we see a significant correlation, especially in the major parties.

Votes to party in the 2018 Chamber districts

(more…)

Tuesday, 27 February 2018

tweets


Twitter: frbailo

links


blogroll


RSS r-bloggers.com

  • easyMTS: My First R Package (Story, and Results)
    This weekend I decided to create my first R package… it’s here! https://github.com/NicoleRadziwill/easyMTS Although I’ve been using R for 15 years, developing a package has been the one thing slightly out of reach for me. Now that I’ve been through the process once, with a package that’s not completely done (but at least has a […]
  • easyMTS R Package: Quick Solver for Mahalanobis-Taguchi System (MTS)
    A new R package in development. Please cite if you use it. The post easyMTS R Package: Quick Solver for Mahalanobis-Taguchi System (MTS) appeared first on Quality and Innovation.
  • Hyper-Parameter Optimization of General Regression Neural Networks
    A major advantage of General Regression Neural Networks (GRNN) over other types of neural networks is that there is only a single hyper-parameter, namely the sigma. In the previous post (https://statcompute.wordpress.com/2019/07/06/latin-hypercube-sampling-in-hyper-parameter-optimization), I’ve shown how to use the random search strategy to find a close-to-optimal value of the sigma by using various random number generators, including […]
  • Cluster multiple time series using K-means
    I have been recently confronted to the issue of finding similarities among time-series and though about using k-means to cluster them. To illustrate the method, I’ll be using data from the Penn World Tables, readily available in R (inside the {pwt9} package): library(tidyverse) library(lubridate) library(pwt9) library(brotools) First, of all, let’s only select the needed columns: […]
  • A Shiny Intro Survey to an Open Science Course
    Last week, we started a new course titled “Statistical Programming and Open Science Methods”. It is being offered under the research program of TRR 266 “Accounting for Transparency” and enables students to conduct data-based research so that...

RSS Simply Statistics

  • You can replicate almost any plot with R
    Although R is great for quickly turning data into plots, it is not widely used for making publication ready figures. But, with enough tinkering you can make almost any plot in R. For examples check out the flowingdata blog or the Fundamentals of Data Visualization book. Here I show five charts from the lay press […]
  • So You Want to Start a Podcast
    Podcasting has gotten quite a bit easier over the past 10 years, due in part to improvements to hardware and software. I wrote about both how I edit and record both of my podcasts about 2 years ago and, while not much has changed since then, I thought it might be helpful if I organized […]
  • The data deluge means no reasonable expectation of privacy - now what?
    Today a couple of different things reminded me about something that I suppose many people are talking about but has been on my mind as well. The idea is that many of our societies social norms are based on the reasonable expectation of privacy. But the reasonable expectation of privacy is increasingly a thing of […]

RSS Statistical Modeling, Causal Inference, and Social Science

  • When presenting a new method, talk about its failure modes.
    A coauthor writes: I really like the paper [we are writing] as it is. My only criticism of it perhaps would be that we present this great new method and discuss all of its merits, but we do not really discuss when it fails / what its downsides are. Are there any cases where the […]
  • The best is the enemy of the good. It is also the enemy of the not so good.
    This post is by Phil Price, not Andrew. The Ocean Cleanup Project’s device to clean up plastic from the Great Pacific Garbage Patch is back in the news because it is back at work and is successfully collecting plastic. A bunch of my friends are pretty happy about it and have said so on social […]
  • On the term “self-appointed” . . .
    I was reflecting on what bugs me so much about people using the term “self-appointed” (for example, when disparaging “self-appointed data police” or “self-appointed chess historians“). The obvious question when someone talks about “self-appointed” whatever is, Who self-appointed you to decide who is illegitimately self-appointed? But my larger concern is with the idea that being […]