Local participation and not unemployment explains the M5S result in the South

The abundance of economic data and the scarcity of social data with a comparable level of granularity is a problem for the quantitative analysis of social phenomena. I argue that this fundamental problem has misguided the analysis of the electoral results of the Five Star Movement (M5S) and its interpretation. In this article, I provide statistical evidence suggesting that — in the South — unemployment is not associated with the exceptional increase in the M5S support and that local participation is a stronger predictor of support than most of the demographics.

What happened

The 2018 Italian general elections (elections, since both the Chamber of Deputies and the Senate, were renewed) saw

  1. a significant increase in the number of votes for two parties, the Five Start Movement (M5S) and the League (formerly Northern League),

and

  1. an increase in the importance geography as an explanatory dimension for the distribution of votes.

The following two maps show where the M5S and the League have increased electoral support from 2013 to 2018. (Electoral data are always data for the election of the Chamber of Deputies).

Vote difference: 2018-2013 (a few communes have not reported all the results, notably Rome)

 

The geographic pattern is quite simple. The M5S has increased its support in the South and maintained its votes in the North, the League has significantly strengthened its support in the North but has also collected votes in the South, where it had virtually no support. The third and the fourth most voted parties, the Democratic Party (PD) and Berlusconi’s Forza Italia (FI), have lost votes almost everywhere. If we map the results of the four parties side-by-side with the same scale, the PD and FI almost faded into the background.

Votes in the 2018 General elections

Yet, major metropolitan areas do not always follow the national trend. If Naples unambiguously voted M5S, Turin, Milan and Rome did saw the Democratic Party as the most voted party in the wealthiest districts.

Votes in the 2018 General elections (Clock-wise from top-left: Turin, Milan, Naples, Rome)

The density of the distribution of results at the commune and sub-commune level in the macro regions indicates that if the M5S electorally dominates in the South and in the two major islands, the League is the most popular party in the North.

Distribution of votes at commune or sub-commune level

The territoriality of the results, especially along the North-South dimension, makes the analysis especially complicated. This because the strong result of the League in the North and of the M5S in the South might simplistically suggest that immigration (which is much stronger in the North) explains the League’s result in the North and unemployment and poverty (stronger in the South) explain the M5S’s result in the South. This reading is especially attractive since immigration and the M5S proposal to introduce a guaranteed minim income have dominated the campaign.

(more…)

Tuesday, 20 March 2018

tweets


Twitter: frbailo

links


blogroll


RSS r-bloggers.com

  • eRum2020 in Milan
    The European R conference will visit Milan in 2020! Mirai Solutions is delighted to actively support and participate in the organization of the event. The European R Users Meeting (eRum) is a biennial conference, taking place in Europe during those...
  • Quick Hit: A Different (Diminutive) Look At Distributions With {ggeconodist}
    Despite being a full-on denizen of all things digital I receive a fair number of dead-tree print magazines as there’s nothing quite like seeing an amazing, large, full-color print data-driven visualization up close and personal. I also like supporting data journalism through the subscriptions since without cash we will only have insane, extreme left/right-wing perspectives... […]
  • Is Scholarly Use of R Use Beating SPSS Already?
    by Bob Muenchen & Sean Mackinnon One of us (Muenchen) has been tracking The Popularity of Data Science Software using a variety of different approaches. One approach is to use Google Scholar to count the number of scholarly articles found … Continue reading →
  • Twitter coverage of the useR! 2019 conference
    Very briefly: Last week was useR! conference time again, coming to you this time from Toulouse, France I’ve retrieved 8 318 tweets that mention #user2019 and run them through my report generator And here are the results Take-home message this year: the R Ladies rock!
  • Looking at flood insurance claims with choroplethr
    I recently learned how to use the choroplethr package through a short tutorial by the package author Ari Lamstein (youtube link here). To cement what I learned, I thought I would use this package to visualize flood insurance claims. I … Continue reading →

RSS Simply Statistics

  • Research quality data and research quality databases
    When you are doing data science, you are doing research. You want to use data to answer a question, identify a new pattern, improve a current product, or come up with a new product. The common factor underlying each of these tasks is that you want to use the data to answer a question that […]
  • I co-founded a company! Meet Problem Forward Data Science
    I have some exciting news about something I’ve been working on for the last year or so. I started a company! It’s called Problem Forward data science. I’m pumped about this new startup for a lot of reasons. My co-founder is one of my families closest friends, Jamie McGovern, who has more than 2 decades […]
  • Generative and Analytical Models for Data Analysis
    Describing how a data analysis is created is a topic of keen interest to me and there are a few different ways to think about it. Two different ways of thinking about data analysis are what I call the “generative” approach and the “analytical” approach. Another, more informal, way that I like to think about […]

RSS Statistical Modeling, Causal Inference, and Social Science

  • Voter turnout and vote choice of evangelical Christians
    Mark Palko writes, “Have you seen this?”, referring to this link to this graph: I responded: Just one of those things, I think. Palko replied: Just to be clear, I am more than willing to believe the central point about the share of the population dropping while the share of the electorate holds relatively steady, […]
  • Endless citations to already-retracted articles
    Ken Cor and Gaurav Sood write: Many claims in a scientific article rest on research done by others. But when the claims are based on flawed research, scientific articles potentially spread misinformation. To shed light on how often scientists base their claims on problematic research, we exploit data on cases where problems with research are […]
  • Gigerenzer: “The Bias Bias in Behavioral Economics,” including discussion of political implications
    Gerd Gigerenzer writes: Behavioral economics began with the intention of eliminating the psychological blind spot in rational choice theory and ended up portraying psychology as the study of irrationality. In its portrayal, people have systematic cognitive biases that are not only as persistent as visual illusions but also costly in real life—meaning that governmental paternalism […]