Quick analysis of the Italian referendum results

The 2016 Italian referendum torpedoed the constitutional reform presented by the government presided by Matteo Renzi (41). According to the final count, which includes 1.2 million votes cast overseas, the reform was rejected by almost 60% of the voters.

Three parties played a predominant role during the electoral campaign: the ruling Democraric Party (PD), leaded by the chief of government Renzi, the Five Star Movement (M5S), founded and leaded by Beppe Grillo (68), and the Lega Nord (LN), leaded by Matteo Salvini (43). The fourth Italian party, Forza Italia, for different reasons – including the health of Silvio Berlusconi (80) – played a minor role.


Monday, 5 December 2016


Twitter: frbailo



RSS r-bloggers.com

  • Lecture slides: Real-World Data Science (Fraud Detection, Customer Churn & Predictive Maintenance)
    These are slides from a lecture I gave at the School of Applied Sciences in Münster. In this lecture, I talked about Real-World Data Science and showed examples on Fraud Detection, Customer Churn & Predictive Maintenance. Real-World Data Scie...
  • Use foreach with HPC schedulers thanks to the future package
    The future package is a powerful and elegant cross-platform framework for orchestrating asynchronous computations in R. It's ideal for working with computations that take a long time to complete; that would benefit from using distributed, parallel frameworks to make them complete faster; and that you'd rather not have locking up your interactive R session. You […]
  • Feature Selection using Genetic Algorithms in R
    From a gentle introduction to a practical solution, this is a post about feature selection using genetic algorithms in R.
  • Using clusterlab to benchmark clustering algorithms
    Clusterlab is a CRAN package (https://cran.r-project.org/web/packages/clusterlab/index.html) for the routine testing of clustering algorithms. It can simulate positive (data-sets with __1 clusters) and negative controls (data-sets with 1 cluster). Why test clustering algorithms? Because they often fail in identifying the true K in practice, published algorithms are not always well tested, and we need to know […]
  • Selecting ‘special’ photos on your phone
    At the beginning of the new year I always want to clean up my photos on my phone. It just never happens. So now (like so many others I think) I have a lot of photos on my phone from … Continue reading →

RSS Simply Statistics

  • How Data Scientists Think - A Mini Case Study
    In episode 71 of Not So Standard Deviations, Hilary Parker and I inaugurated our first “Data Science Design Challenge” segment where we discussed how we would solve a given problem using data science. The idea with calling it a “design challenge” was to contrast it with common “hackathon” type models where you are presented with […]
  • The Netflix Data War
    A recent article in the Wall Street Journal, “At Netflix, Who Wins When It’s Hollywood vs. the Algorithm?” by Shalini Ramachandran and Joe Flint details some of the internal debates within Netflix between the Los Angeles-based content team, which is in charge of developing and marketing new content for the streaming service, and the data […]
  • The Role of Theory in Data Analysis
    In data analysis, we make use of a lot of theory, whether we like to admit it or not. In a traditional statistical training, things like the central limit theorem and the law of large numbers (and their many variations) are deeply baked into our heads. I probably use the central limit theorem everyday in […]

RSS Statistical Modeling, Causal Inference, and Social Science