Eyes on Guatemala

The Economist has published an article on malnutrition in Guatemala. Hunger is not new in the country, with half of the children population not eating enough Guatemala is the six-worst country in the world, but in some Maya communities children chronic malnutrition can reach 75% (the Economist says 80%). These figures are astonishing, especially because the problem is not food scarcity.

But this as well is hardly new. It was 1981 when Amartya Sen published his Poverty and Famines: An Essay on Entitlement and Deprivation demonstrating that hunger is mostly caused by inequality rather than scarcity. There is no lack of food in Guatemala if you have the money to buy it. In Guatemala City is taking place, as we speak, the 14th Festival Gastronómico Internacional so it seems difficult to talk about a famine or about an emergency (according to the Longman Dictionary an emergency is “an unexpected and dangerous situation that must be dealt with immediately”). The problem is the lack of a functioning state. Because a state cannot function with tax revenues estimated at just 10% of GDP.

Democracy is highly unrepresentative in Guatemala. Who should push for a better redistribution of resources has no voice. National newspapers point constantly the finger at the government (presidency, parliament, judiciary) in a impressive campaign of delegitimation. The Rosenberg tape was just part of it. I’m not defending the government, but saying that criticising it and attempting to systematically destroy its credibility are not quite the same thing. While the headlines cover crime, corruption and hunger the real battle within the country is on the tax reform. A battle that so far every government has badly lost.

Friday, 28 August 2009

tweets


Twitter: frbailo

links


blogroll


RSS r-bloggers.com

  • Lecture slides: Real-World Data Science (Fraud Detection, Customer Churn & Predictive Maintenance)
    These are slides from a lecture I gave at the School of Applied Sciences in Münster. In this lecture, I talked about Real-World Data Science and showed examples on Fraud Detection, Customer Churn & Predictive Maintenance. Real-World Data Scie...
  • Use foreach with HPC schedulers thanks to the future package
    The future package is a powerful and elegant cross-platform framework for orchestrating asynchronous computations in R. It's ideal for working with computations that take a long time to complete; that would benefit from using distributed, parallel frameworks to make them complete faster; and that you'd rather not have locking up your interactive R session. You […]
  • Feature Selection using Genetic Algorithms in R
    From a gentle introduction to a practical solution, this is a post about feature selection using genetic algorithms in R.
  • Using clusterlab to benchmark clustering algorithms
    Clusterlab is a CRAN package (https://cran.r-project.org/web/packages/clusterlab/index.html) for the routine testing of clustering algorithms. It can simulate positive (data-sets with __1 clusters) and negative controls (data-sets with 1 cluster). Why test clustering algorithms? Because they often fail in identifying the true K in practice, published algorithms are not always well tested, and we need to know […]
  • Selecting ‘special’ photos on your phone
    At the beginning of the new year I always want to clean up my photos on my phone. It just never happens. So now (like so many others I think) I have a lot of photos on my phone from … Continue reading →

RSS Simply Statistics

  • How Data Scientists Think - A Mini Case Study
    In episode 71 of Not So Standard Deviations, Hilary Parker and I inaugurated our first “Data Science Design Challenge” segment where we discussed how we would solve a given problem using data science. The idea with calling it a “design challenge” was to contrast it with common “hackathon” type models where you are presented with […]
  • The Netflix Data War
    A recent article in the Wall Street Journal, “At Netflix, Who Wins When It’s Hollywood vs. the Algorithm?” by Shalini Ramachandran and Joe Flint details some of the internal debates within Netflix between the Los Angeles-based content team, which is in charge of developing and marketing new content for the streaming service, and the data […]
  • The Role of Theory in Data Analysis
    In data analysis, we make use of a lot of theory, whether we like to admit it or not. In a traditional statistical training, things like the central limit theorem and the law of large numbers (and their many variations) are deeply baked into our heads. I probably use the central limit theorem everyday in […]

RSS Statistical Modeling, Causal Inference, and Social Science