Back into Poverty

Increase in food prices has pushed back into poverty at least 100 million people in 2008 and, according to the United Nations Standing Committee on Nutrition (here, p. 60),

erase at least four years of progress towards the Millennium Development Goal (MDG) 1 target for the reduction of poverty. The household level consequences of this crisis are most acutely felt in LIFDCs [Low-Income Food-Deficit Countries] where a 50% rise in staple food prices causes a 21% increase in total food expenditure, increasing these from 50 to 60% of income. In a high income country this rise in prices causes a 6% rise in retail food expenditure with income expenditure on food rising from 10 to 11%. FAO estimates that food price rises have resulted in at least 50 million more people becoming hungry in 2008, going back to the 1970 figures.

According to the World Bank (here) this means that between 200,000 and 400,000 more children will died every year for malnutrition until 2015.

Thursday, 18 June 2009

Selva Amazónica, More Valuable Standing Than Felled

An article published on Science this week analyzes the development of the region across the Amazon deforestation frontier. In three words: boom and bust. It means that comparing the Human Development Index of different classes of Brazilian municipalities, from prefrontier municipalities to heavily post frontier deforested municipalities, you can see how the HDI relatively grows in the first phase of the deforestation (on the frontier line) and relatively declines when deforestation is completed.  In other words,

when the median HDI of each class is plotted against deforestation extent, a boom-and-bust pattern becomes apparent, which suggests that relative development levels increase rapidly in the early stages of deforestation and then decline as the frontier advances. Hence, although municipalities with active deforestation had development levels that approached the overall Brazilian median, pre- and postfrontier HDI values were substantially lower and statistically indistinguishable from each other (P > 0.9). These results are robust to the particular thresholds used to define the frontier classes. A boom-and-bust pattern is also found for each of the HDI subindices: standard of living, literacy, and life expectancy.

This strongly suggests that the poor have no choice but to exploit every resource available. It is difficult to think that farmers or loggers do not see that they are compromising their very own future. They simply have no choice. The challenge is giving them a choice.

Friday, 12 June 2009

On the Evolution of Thinking

What if we are becoming the very same Artificial Intelligence that we are trying to design? The doubt has has been raised by Nicholas Carr in an article published one year ago on The Atlantic and now published on Le Monde. The theory is intriguing and the discourse goes, in the words of developmental psychologist Maryanne Wolf, more or less in this direction:

We are not only what we read, We are how we read.

So, learning directly from the voice of Socrates is not the same as learning from the Internet. The way we approach new ideas and knowledge influences how we assimilate them and how we develop our thinking. The risk is that our mind might find so attractive the effectivness of the Google’s algorithm to try to replicate it forgetting all the ambiguity that has made us what we are. What we are so far.

Update: Have a look at this article on Le Monde about the influence of the new information technologies on culture.

Friday, 5 June 2009


Twitter: frbailo




  • Handling & Sharing PCAPs Like a Boss with PacketTotal
    The fine folks over at @PacketTotal bequeathed an API token on me so I cranked out an R package for it to enable more dynamic investigations work (RStudio makes for an amazing incident responder investigations console given that you can script in multiple languages, code in C[++], and write documentation all at the same time... […]
  • Code and Data in a large Machine Learning project
    We did a large machine learning project at work recently. It involved two data scientists, two backend engineers and a data engineer, all working on-and-off on the R code during the project. The project had many interesting and new aspects to me, among them are doing data science in an agilish way, how to keep […]
  • RQuantLib 0.4.8: Small updates
    A new version 0.4.8 of RQuantLib reached CRAN and Debian. This release was triggered by a CRAN request for an update to the script which was easy enough (and which, as it happens, did not result in changes in the configure script produce...
  • Rcpp 1.0.1: Updates
    Following up on the 10th anniversary and the 1.0.0. release, we excited to share the news of the first update release 1.0.1 of Rcpp. package turned ten on Monday—and we used to opportunity to mark the current version as 1.0.0! It arrived at CRAN ov...
  • wrapr::let()
    I would like to once again recommend our readers to our note on wrapr::let(), an R function that can help you eliminate many problematic NSE (non-standard evaluation) interfaces (and their associate problems) from your R programming tasks. The idea is to imitate the following lambda-calculus idea: let x be y in z := ( λ […]

RSS Simply Statistics

  • 10 things R can do that might surprise you
    Over the last few weeks I’ve had a couple of interactions with folks from the computer science world who were pretty disparaging of the R programming language. A lot of the critism focused on perceived limitations of R to statistical analysis. It’s true, R does have a hugely comprehensive list of analysis packages on CRAN, […]
  • Open letter to journal editors: dynamite plots must die
    Statisticians have been pointing out the problem with dynamite plots, also known as bar and line graphs, for years. Karl Broman lists them as one of the top ten worst graphs. The problem has even been documented in the peer reviewed literature. For example, this British Journal of Pharmacology paper titled Show the data, don’t […]
  • Interview with Stephanie Hicks
    Editor’s note: For a while we ran an interview series for statisticians and data scientists, but things have gotten a little hectic around here so we’ve dropped the ball! But we are re-introducing the series, starting with Stephanie Hicks. If you have recommendations of a (junior) person in academics or industry you would like to […]

RSS Statistical Modeling, Causal Inference, and Social Science