Il voto per le europee a Milano

La geografia socio-politica delle grandi città italiane del centro-nord è radicalmente cambiata negli ultimi 25 anni. Se osserviamo la distribuzione dei voti a Milano tra i partiti alle elezioni europee del 1994, tenutesi pochi mesi dopo la straordinaria vittoria elettorale di Silvio Berlusconi nel Marzo dello stesso anno in cui Forza Italia ottenne il 21% e il Polo delle Libertà più quasi il 43%), vediamo un chiaro spostameno da destra verso il centro-sinistra e il PD.

Voti assegnati ai partiti nelle elezioni europee del 1994 e 2019.

(more…)

Wednesday, 12 June 2019

How to sync your Zotero library (and files) with WebDAV

In this post, I explain how to use an online file storing and sharing service like AARNet’s CloudStor (but any WebDAV service will do) to access and update your Zotero library from different computers.

(more…)

Sunday, 10 March 2019

recogeo: A new R package to reconcile changing geographic boundaries (and corresponding variables)

Demographics information is usually reported in relation to precise boundaries: administrative, electoral, statistical, etc. Comparing demographics information reported at different point in time is often problematic because boundaries keep changing. The recogeo package faciliates reconciling boundaries and their data by a spatial analysis of the boundaries of two different periods. In this post, I explain how to install the package, reconcile two spatial objects and check the results.

(more…)

Friday, 1 February 2019

Are you parallelizing your raster operations? You should!

If you plan to do anything with the raster package you should definitely consider parallelize all your processes, especially if you are working with very large image files. I couldn’t find any blog post describing how to parallelize with the raster package (it is well documented in the package documentation, though). So here my notes.
(more…)

Thursday, 17 January 2019

How to (quickly) enrich a map with natural and anthropic details


In this post I show how to enrich a ggplot map with data obtained from the Open Street Map (OSM) API. After adding elevation details to the map, I add water bodies and elements identifying human activity. To highlight the areas more densely inhabitated, I propose to use a density-based clustering algorithm of OSM features.

(more…)

Thursday, 9 August 2018

The two alternatives to the monasterisation of the World wide web

Saint Michael’s Abbey, in the Susa Valley, Piedmont. Source: Wikipedia.

In Medieval Europe, information was physically concentrated in very few secluded libraries and archives. Powerful institutions managed them and regulated who could access what. The library of the fictional abbey that is described in Umberto Eco’s The Name of the Rose is located in a fortified tower and only the librarian knows how to navigate its mysteries. Monasteries played an essential role in preserving written information and creating new intelligence from that knowledge. But being written information a scarce resource, with the keys to libraries came also authority and power. Similarly, Internet companies are amassing information within their fortified walls. In so doing, they provide services that we now see as essential but they also contravene the two core principles of the Internet: openness and decentralisation.

(more…)

Monday, 7 May 2018

Local participation and not unemployment explains the M5S result in the South

The abundance of economic data and the scarcity of social data with a comparable level of granularity is a problem for the quantitative analysis of social phenomena. I argue that this fundamental problem has misguided the analysis of the electoral results of the Five Star Movement (M5S) and its interpretation. In this article, I provide statistical evidence suggesting that — in the South — unemployment is not associated with the exceptional increase in the M5S support and that local participation is a stronger predictor of support than most of the demographics.

What happened

The 2018 Italian general elections (elections, since both the Chamber of Deputies and the Senate, were renewed) saw

  1. a significant increase in the number of votes for two parties, the Five Start Movement (M5S) and the League (formerly Northern League),

and

  1. an increase in the importance geography as an explanatory dimension for the distribution of votes.

The following two maps show where the M5S and the League have increased electoral support from 2013 to 2018. (Electoral data are always data for the election of the Chamber of Deputies).

Vote difference: 2018-2013 (a few communes have not reported all the results, notably Rome)

 

The geographic pattern is quite simple. The M5S has increased its support in the South and maintained its votes in the North, the League has significantly strengthened its support in the North but has also collected votes in the South, where it had virtually no support. The third and the fourth most voted parties, the Democratic Party (PD) and Berlusconi’s Forza Italia (FI), have lost votes almost everywhere. If we map the results of the four parties side-by-side with the same scale, the PD and FI almost faded into the background.

Votes in the 2018 General elections

Yet, major metropolitan areas do not always follow the national trend. If Naples unambiguously voted M5S, Turin, Milan and Rome did saw the Democratic Party as the most voted party in the wealthiest districts.

Votes in the 2018 General elections (Clock-wise from top-left: Turin, Milan, Naples, Rome)

The density of the distribution of results at the commune and sub-commune level in the macro regions indicates that if the M5S electorally dominates in the South and in the two major islands, the League is the most popular party in the North.

Distribution of votes at commune or sub-commune level

The territoriality of the results, especially along the North-South dimension, makes the analysis especially complicated. This because the strong result of the League in the North and of the M5S in the South might simplistically suggest that immigration (which is much stronger in the North) explains the League’s result in the North and unemployment and poverty (stronger in the South) explain the M5S’s result in the South. This reading is especially attractive since immigration and the M5S proposal to introduce a guaranteed minim income have dominated the campaign.

(more…)

Tuesday, 20 March 2018

2018 Italian general election: Details on my simulation

This article describes the simulation behind the app that you find here

This simulation of the results for the 2018 general election is based on the results from the last two national elections (the Italian parliament election in 2013 and the European Parliament election 2014) and national polls conducted until 16 February 2018. The simulation is based on one assumption, which is reasonable but not necessarily realistic: the relative territorial strength of parties is stable. From this assumption derives that if the national support for a party (as measured by national voting intention polls) varies, it varies consistently and proportionally everywhere. A rising tide lifts all boats and vice versa. The assumption has some empirical justification. If we compare the difference from the national support (in percentage) for each district in 2013 and 2014 we see a significant correlation, especially in the major parties.

Votes to party in the 2018 Chamber districts

(more…)

Tuesday, 27 February 2018

Quick analysis of the Italian referendum results

The 2016 Italian referendum torpedoed the constitutional reform presented by the government presided by Matteo Renzi (41). According to the final count, which includes 1.2 million votes cast overseas, the reform was rejected by almost 60% of the voters.

Three parties played a predominant role during the electoral campaign: the ruling Democraric Party (PD), leaded by the chief of government Renzi, the Five Star Movement (M5S), founded and leaded by Beppe Grillo (68), and the Lega Nord (LN), leaded by Matteo Salvini (43). The fourth Italian party, Forza Italia, for different reasons – including the health of Silvio Berlusconi (80) – played a minor role.

(more…)

Monday, 5 December 2016

Cosa possiamo imparare dal M5S

Leggo e rispondo al post di Massimo Mantellini (Il M5S, il wifi e il principio di precauzione) in cui si evidenzia con preoccupazione come il Movimento abbia portato in Parlamento, dunque in qualche modo legittimandole, posizioni anti-scientifiche; un “pensiero tossico, banale e a suo modo inattaccabile, che nuoce al Paese intero”.

Il Movimento Cinque Stelle con un bacino elettorale che si aggira tra il 25 e il 30% (8.5-10 milioni di persone) è necessariamente complesso in termini di rappresentanza demografica e di diversità di opinione. Considerando un astensionismo del 25%, se vi trovate in fila al supermercato delle 10 persone che vi precedono circa due votano M5S. Purtroppo questa complessità raramente traspare nelle narrazioni giornalistiche, e chi fa informazione tende (troppo) spesso a preferire i tratti caricaturali (da cappello di carta stagnola o da gita in Corea del Nord, per intenderci). Ma questo tipo di informazione è sbagliata: primo perché distorce nella semplificazione, secondo perché incoraggia comportamenti macchiettistici, grotteschi e sbracati da parte di chi sedendo in istituzioni affollate cerca visibilità.

(more…)

Friday, 22 July 2016

tweets


Twitter: frbailo

links


blogroll


RSS r-bloggers.com

  • New Version of regtools package
    My updated version of my regtools package, tools for parametric and nonparametric regression, is now on CRAN, https://cran.r-project.org/package=regtools It has a number of new functions and datasets. Type vignette(‘regtools’) for an overview. Advertisements
  • Dummy Is As Dummy Does
    In the 1975 edition of “Applied multiple regression/correlation analysis for the behavioral sciences” by Jacob Cohen, an interesting approach of handling missing values in numeric variables was proposed with the purpose to improve the traditional single-value imputation, as described below: – First of all, impute missing values by the value of mean or median – […]
  • RcppExamples 0.1.9
    A new version of the RcppExamples package is now on CRAN. The RcppExamples package provides a handful of short examples detailing by concrete working examples how to set up basic R data structures in C++. It also provides a simple example for packagi...
  • Visualizing the relationship between multiple variables
    Visualizing the relationship between multiple variables can get messy very quickly. This post is about how the ggpairs() function in the GGally package does this task, as well as my own method for visualizing pairwise relationships when all the variables … Continue reading →
  • Inferring a continuous distribution from binned data by @ellis2013nz
    Today’s post comes from an idea and some starting code by my colleague David Diviny from Nous Group. A common real-world problem is trying to estimate an unknown continuous variable from data that has been published in lumped-together bins. Often th...

RSS Simply Statistics

  • The data deluge means no reasonable expectation of privacy - now what?
    Today a couple of different things reminded me about something that I suppose many people are talking about but has been on my mind as well. The idea is that many of our societies social norms are based on the reasonable expectation of privacy. But the reasonable expectation of privacy is increasingly a thing of […]
  • More datasets for teaching data science: The expanded dslabs package
    Introduction We have expanded the dslabs package, which we previously introduced as a package containing realistic, interesting and approachable datasets that can be used in introductory data science courses. This release adds 7 new datasets on climate change, astronomy, life expectancy, and breast cancer diagnosis. They are used in improved problem sets and new projects […]
  • Research quality data and research quality databases
    When you are doing data science, you are doing research. You want to use data to answer a question, identify a new pattern, improve a current product, or come up with a new product. The common factor underlying each of these tasks is that you want to use the data to answer a question that […]

RSS Statistical Modeling, Causal Inference, and Social Science